Devoir de Mathématiques

Pour le 27 janvier 2015

Problème

- 1. Calculer tXSX en fonction des composantes de la matrice $S\in \mathfrak{M}_n(\mathbb{R})$ et de la colonne $X\in \mathfrak{M}_{n,1}(\mathbb{R})$.
- **2.** Une matrice symétrique S est dite **positive**, ce qu'on note $S \in \mathcal{S}_n^+(\mathbb{R})$, lorsque toutes ses valeurs propres sont positives.

Démontrer que $S \in \mathcal{S}_n(\mathbb{R})$ est positive si, et seulement si,

$$\forall X \in \mathfrak{M}_{n,1}(\mathbb{R}), \quad {}^{t}XSX \geqslant 0.$$

3. On dit que $S\in\mathcal{S}_n(\mathbb{R})$ est **définie positive**, ce qu'on note $S\in\mathcal{S}_n^{++}(\mathbb{R})$, lorsque toutes ses valeurs propres sont strictement positives.

Démontrer que $S \in \mathcal{S}_n(\mathbb{R})$ est définie positive si, et seulement si, ${}^tXSX > 0$ pour tout $X \in \mathfrak{M}_{n,1}(\mathbb{R})$ non nul.

Partie A.

Nous allons démontrer que

$$\det S \leqslant \prod_{i=1}^{n} s_{i,i} \tag{\star}$$

pour toute matrice $S = (s_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{S}_n^+(\mathbb{R})$.

4. Démontrer que

$$\forall 1 \leq i \leq n, \quad s_{i,i} \geq 0.$$

- 5. On suppose que $S \in \mathcal{S}_n^{++}(\mathbb{R})$. Démontrer que

$$\forall 1 \leqslant i \leqslant n, \quad s_{i,i} > 0.$$

- **6.** Démontrer l'inégalité (*) dans le cas où la matrice symétrique S est positive mais pas définie positive.
- 7. On suppose ici que $s_{i,i} = 1$ pour tout $1 \le i \le n$.
- **7. a.** Démontrer que

$$\forall \, (\lambda_1,\ldots,\lambda_n) \in (\mathbb{R}_+^*)^n, \quad \left(\prod_{k=1}^n \lambda_k\right)^{1/n} \leqslant \frac{1}{n} \sum_{k=1}^n \lambda_k.$$

- Ton utilisera la convexité de la fonction exp.
- **7.b.** En déduire que l'inégalité (\star) est vraie pour S. (\star) On appliquera le théorème spectral à S et on appliquera l'inégalité précédente aux valeurs propres de S.
- 8. Soient $S \in \mathcal{S}_{n}^{++}(\mathbb{R})$;

$$T=Diag\Big({}^1\!/_{\!\sqrt{s_{1,1}}},\cdots,{}^1\!/_{\!\sqrt{s_{n,n}}}\Big)\in\mathfrak{M}_n(\mathbb{R}),$$

et $B = TST \in \mathfrak{M}_n(\mathbb{R})$.

- **8.a.** Démontrer que $B \in \mathcal{S}_n^{++}(\mathbb{R})$.
- **8.b.** En déduire que l'inégalité (*) est vérifiée par S.
- 9. Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathfrak{M}_n(\mathbb{R})$.
- **9.a.** Démontrer que $S = {}^{t}AA \in \mathcal{S}_{n}^{++}(\mathbb{R}).$
- 9.b. En déduire l'inégalité d'Hadamard :

$$\big|\det A\big|\leqslant \prod_{j=1}^n \Bigl(\sum_{k=1}^n \alpha_{k,j}^2\Bigr)^{1/2}.$$

Partie B.

Soit $(a_n)_{n\in\mathbb{N}}$, une suite réelle telle que $a_0\neq 0$.

10. Démontrer qu'il existe une, et une seule, suite réelle $(\mathfrak{b}_n)_{n\in\mathbb{N}}$ telle que

$$a_0b_0=1$$
 et $\forall n\geqslant 1$, $\sum_{k=0}^n a_kb_{n-k}=0$.

11. Pour tout entier $n \ge 1$, on considère la matrice définie par

$$A_{n} = \begin{pmatrix} a_{0} & 0 & \cdots & 0 \\ a_{1} & & & & \\ \vdots & & & 0 \\ \vdots & & & a_{n} & \cdots & a_{1} & a_{0} \end{pmatrix} \in \mathfrak{M}_{n+1}(\mathbb{R})$$

- **11.a.** Vérifier que $A_n \in GL_{n+1}(\mathbb{R})$.
- 11.b. Calculer le vecteur

$$A_n \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

11.c. Déterminer une matrice $A'_n \in \mathfrak{M}_{n+1}(\mathbb{R})$ telle que

$$b_n = \frac{\det A'_n}{\det A_n}.$$

- Penser aux formules de Cramer.
- **12.** On suppose qu'il existe r>0 tel que la série $\sum |\alpha_k| r^k$ converge. Démontrer que la série $\sum \alpha_k^2 r^{2k}$ converge et que

$$\sum_{k=0}^{+\infty}\alpha_k^2r^{2k}\leqslant \Bigl(\sum_{k=0}^{+\infty}\lvert\alpha_k\rvert r^k\Bigr)^2.$$

13. Démontrer qu'il existe une constante réelle positive α telle que

$$\forall \ k\geqslant 1, \quad |b_k|\leqslant \frac{1}{|a_0|}\alpha^k.$$

- **14.** Soit $f: \mathbb{R} \to \mathbb{R}$, une application développable en série entière en 0, telle que $f(0) \neq 0$. Démontrer que

$$g = \frac{1}{f}$$

est définie au voisinage de 0 et développable en série entière en 0.

e3a 2008 PSI 2 (extrait)

Solution & Inégalité d'Hadamard

On note $(E_1, ..., E_n)$, la base canonique de $\mathfrak{M}_{n,1}(\mathbb{R})$.

$${}^{t}XSX = \sum_{i=1}^{n} \sum_{j=1}^{n} s_{i,j} x_{i} x_{j}$$

2. Comme S est symétrique réelle, il existe une matrice diagonale $D = Diag(\lambda_1, \ldots, \lambda_n)$ (où les λ_k sont les valeurs propres de S) et une matrice orthogonale P telles que $S = {}^tPDP$. En posant Y = PX, on en déduit que

$${}^{\mathrm{t}}XSX = {}^{\mathrm{t}}X{}^{\mathrm{t}}PDPX = {}^{\mathrm{t}}YDY = \sum_{k=1}^{n}\lambda_k y_k^2$$

où $y_1, ..., y_n$ sont les composantes de Y.

Par conséquent :

- Si S ∈ $S_n^+(\mathbb{R})$, alors ${}^tXSX \ge 0$ pour tout $X \in \mathfrak{M}_{n,1}(\mathbb{R})$.
- Réciproquement, si ${}^tXSX \geqslant 0$ pour tout X, alors pour tout $1 \leqslant k \leqslant n$, on peut choisir $X = {}^tPE_k$, soit $Y = E_k$ et $\lambda_k = {}^tXSX \geqslant 0$.
- **3.** Une somme de termes *positifs* est nul si, et seulement si, chaque terme est nul.

Avec les notations précédentes :

- Si $S \in \mathcal{S}_n^{++}(\mathbb{R})$, alors ${}^tXSX \geqslant 0$ et si ${}^tXSX = 0$, alors $\lambda_k x_k^2 = 0$ pour tout $1 \leqslant k \leqslant n$ et comme les λ_k sont strictement positives, alors $x_k = 0$ pour tout $1 \leqslant k \leqslant n$, donc X = 0.
- Réciproquement, si X est un vecteur propre de S associé à λ , alors $X \neq 0$, donc

$$0 < {}^{\mathrm{t}}XSX = \lambda^{\mathrm{t}}XX = \lambda ||X||^2$$

et $||X||^2 > 0$, donc $\lambda > 0$.

Partie A.

- **4.** Si $X = E_{i,i}$ alors $s_{i,i} = {}^{t}X_{i}SX_{i} \ge 0$ puisque $S \in \mathcal{S}_{n}^{+}(\mathbb{R})$.
- **5.** Avec les mêmes notations, ${}^tX_iSX_i>0$ car cette fois $S\in\mathcal{S}_n^{++}(\mathbb{R}).$
- **6.** Lorsque S est positive mais pas définie positive, alors 0 est valeur propre de S, donc det S=0 et comme les $s_{i,i}$ sont tous positifs, alors l'inégalité (\star) est évidente.
- **7.a.** Pour tout $1 \leqslant k \leqslant n$, on pose $\mu_k = \ell n \lambda_k$. Par convexité de exp,

$$exp\Big(\frac{1}{n}\sum_{k=1}^n\mu_k\Big)\leqslant\frac{1}{n}\sum_{k=1}^nexp\,\mu_k,$$

ce qui équivaut à l'inégalité demandée.

7.b. Comme S est symétrique, définie positive, elle est diagonalisable et en notant

$$0 < \lambda_1 \leqslant \cdots \leqslant \lambda_n$$

les valeurs propres de S, on a

$$\label{eq:detS} \det S = \prod_{k=1}^n \lambda_k \quad \text{et} \quad \operatorname{tr} S = \sum_{k=1}^n \lambda_k = \sum_{i=1}^n s_{i,i} = n.$$

D'après 4.a.,

$$\det S \leqslant 1 = \prod_{i=1}^{n} s_{i,i}.$$

8. a. Comme S et T sont symétriques,

$${}^{t}B = {}^{t}T^{t}S^{t}T = TST = B,$$

donc B est symétrique.

La matrice T est diagonale et ses coefficients diagonaux sont tous différents de 0, donc elle est inversible. Comme $S \in \mathcal{S}_n^{++}(\mathbb{R})$, pour toute colonne X,

$${}^{t}XBX = {}^{t}(TX)S(TX) \geqslant 0$$

donc B est positive. Enfin, si ${}^{t}XBX = 0$, alors TX = 0 (puisque S est définie positive) et donc X = 0 puisque T est inversible, donc B est définie positive.

8.b. Quels que soient les indices i et j,

$$b_{i,j} = 1/\sqrt{s_{i,i}} s_{i,j} 1/\sqrt{s_{j,j}}$$

Les coefficients diagonaux de B sont donc tous égaux à 1 et

$$\det B = \det(TST) \leqslant 1$$

d'après 4. Par conséquent,

$$\det S \leqslant \frac{1}{(\det T)^2} = \prod_{i=1}^n s_{i,i}.$$

9.a. La matrice S est symétrique :

$${}^{t}S = {}^{t}({}^{t}AA) = {}^{t}A{}^{t}({}^{t}A) = {}^{t}AA = S.$$

Pour toute colonne X,

$${}^{t}XSX = {}^{t}(AX)(AX) = ||AX||^{2} \geqslant 0,$$

donc $S \in \mathcal{S}_n^+(\mathbb{R})$.

9.b. On applique l'inégalité (\star) à $S = {}^{t}AA$. D'une part,

$$\det S = (\det A)^2$$
.

D'autre part, d'après la formule du produit matriciel, le i-ème coefficient diagonal de S est égal à

$$\sum_{k=1}^n a_{i,k}^2 \geqslant 0.$$

L'inégalité d'Hadamard se déduit alors de l'inégalité (*).

Partie B.

10. Comme le réel a_0 n'est pas nul, il est inversible : il existe un, et un seul, réel b_0 tel que $a_0b_0 = 1$.

Pour tout $n \geqslant 1$, si b_0 , b_1 , ..., b_{n-1} sont connus, comme $a_0 \neq 0$,

$$\sum_{k=0}^{n} a_k b_{n-k} = 0 \iff b_n = \frac{-1}{a_0} \sum_{k=1}^{n} a_k b_{n-k}$$

donc b_n est connu à son tour.

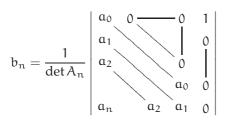
L'existence et l'unicité de la suite $(\mathfrak{b}_n)_{n\in\mathbb{N}}$ sont ainsi démontrées par récurrence.

11.a. La matrice A_n est triangulaire et ses coefficients diagonaux sont tous différents de 0, donc A_n est inversible.

11.b.

$$\begin{split} A_{n} \begin{pmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{n-1} \\ b_{n} \end{pmatrix} \\ = \begin{pmatrix} a_{0}b_{0} \\ a_{1}b_{0} + a_{0}b_{1} \\ \vdots \\ a_{n-1}b_{0} + \cdots + a_{0}b_{n-1} \\ a_{n}b_{0} + a_{n-1}b_{1} + \cdots + a_{1}b_{n-1} + a_{0}b_{n} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \end{split}$$

11. c. D'après les formules de Cramer,



et comme la matrice A_n est triangulaire, $\det A_n = a_0^{n+1}$. 12. Comme la série $\sum |a_k| r^k$ converge, son terme général tend vers 0, donc il existe un rang N_0 tel que

$$\forall\; k\geqslant N_0,\quad 0\leqslant \alpha_k^2r^{2k}\leqslant |\alpha_k|r^k\leqslant 1.$$

Par comparaison, la série $\sum a_k^2 r^{2k}$ est donc (absolument) convergente.

D'autre part, pour tout $N \in \mathbb{N}$,

$$\begin{split} \left[\sum_{k=0}^{N}|\alpha_k|r^k\right]^2 &= \sum_{k=0}^{N}\alpha_k^2r^{2k} + 2\underbrace{\sum_{0\leqslant i < j\leqslant k}|\alpha_i|\,|\alpha_j|r^{i+j}}_{\geqslant 0} \\ &\geqslant \sum_{k=0}^{N}\alpha_k^2r^{2k}. \end{split}$$

Les deux séries étant convergentes, on peut alors faire tendre N vers $+\infty$ et en déduire que

$$\sum_{k=0}^{+\infty}\alpha_k^2r^{2k}\leqslant \Bigl(\sum_{k=0}^{+\infty}|\alpha_k|r^k\Bigr)^2.$$

13. L'indication nous suggère de considérer la matrice suivante.

$$A_n'' = \begin{pmatrix} a_0 & & & & 1 \\ a_1 r & a_0 r & & & 0 \\ \vdots & & & & \vdots \\ a_{n-1} r^{n-1} & \cdots & \cdots & a_0 r^{n-1} & 0 \\ a_n r^n & \cdots & \cdots & a_1 r^n & 0 \end{pmatrix}.$$

En factorisant ligne par ligne le déterminant de A_n'' , on arrive à l'égalité suivante :

$$\det A_n'' = r^{n(n+1)/2} \det A_n'$$

et d'après l'inégalité d'Hadamard,

$$(\det A_n'')^2 \leqslant \prod_{i=0}^n \left[\sum_{k=0}^n \alpha_{k,i}^2 \right]$$

avec, pour j = n (dernière colonne de A''_n):

$$\sum_{k=0}^n \alpha_{k,j}^2 = 1$$

et pour tout $0 \le j < n$, d'après **10.**,

$$\begin{split} 0 \leqslant \sum_{k=0}^n \alpha_{k,j}^2 &= r^{2j} \sum_{k=0}^{n-j} (\alpha_k r^k)^2 \\ &\leqslant r^{2j} \Bigl(\sum_{k=0}^{+\infty} |\alpha_k| r^k \Bigr)^2. \end{split}$$

Ainsi,

$$|\det A_n''| \leqslant r^{n(n-1)/2} \left(\sum_{k=0}^{+\infty} |a_k| r^k\right)^n$$

donc

$$|\det A_n'| = \frac{|\det A_n''|}{r^{n(n+1)/2}} \leqslant \left(\frac{1}{r} \sum_{k=0}^{+\infty} |\alpha_k| r^k\right)^n$$

et d'après 9.c.

$$|b_n| = \frac{1}{|a_0|} \left(\frac{1}{|a_0|r} \sum_{k=0}^{+\infty} |a_k| r^k \right)^n.$$

14. Comme $f(0) \neq 0$ et que f est continue en 0 (en tant que somme d'une série entière de rayon de convergence strictement positif), alors f reste non nulle au voisinage de 0, donc $\frac{1}{f}$ est définie au voisinage de 0.

Comme f est développable en série entière au voisinage de 0, alors il existe une suite réelle $(a_n)_{n\in\mathbb{N}}$ et un réel R>0 tels que

$$\forall x \in]-R, R[, f(x) = \sum_{k=0}^{+\infty} a_k x^k.$$

En particulier, $a_0 = f(0) \neq 0$.

Comme $a_0 \neq 0$, d'après 8., il existe une, et une seule, suite $(b_n)_{n \in \mathbb{N}}$ telle que $a_0b_0 = 1$ et que

$$\forall n \geqslant 1, \quad \sum_{k=0}^{n} a_k b_{n-k} = 0.$$

Pour tout 0 < r < R, la série $\sum a_n r^n$ est absolument convergente et, d'après **10.** et **11.**, il existe $\alpha > 0$ tel que le rayon de convergence de $\sum b_n x^n$ soit supérieur à α^{-1} .

rayon de convergence de $\sum b_n x^n$ soit supérieur à α^{-1} . Soit alors $\rho = \min\{\alpha^{-1},R\} > 0$. Pour tout $x \in \mathbb{R}$ tel que $|x| < \rho$, les deux séries $\sum a_n x^n$ et $\sum b_n x^n$ sont absolument convergentes et d'après la formule du produit de Cauchy,

$$\left(\sum_{n=0}^{+\infty} a_n x^n\right) \left(\sum_{n=0}^{+\infty} b_n x^n\right) = 1$$

ce qui revient à :

$$\forall x \in]-\rho, \rho[, \quad \sum_{n=0}^{+\infty} b_n x^n = \frac{1}{f(x)}.$$

Comme $\rho > 0$, on en conclut que la fonction $^1/_f$ est développable en série entière en 0.